DocumentCode :
3041658
Title :
A posteriori error estimates of variational discretization and mixed finite element methods for integro-differential optimal control problems
Author :
Lu, Zuliang ; Huang, Xiao
Author_Institution :
Sch. of Math. & Stat., Chongqing Three Gorges Univ., Chongqing, China
fYear :
2011
fDate :
26-28 July 2011
Firstpage :
1914
Lastpage :
1917
Abstract :
In this paper, we study a posteriori error estimates of variational discretization and mixed finite element methods for optimal control problems governed by integro-differential equations. The state and the co-state are discretized by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discretized. We derive a posteriori error estimates for the coupled state and control approximation.
Keywords :
finite element analysis; integro-differential equations; optimal control; integro-differential optimal control problems; lowest order Raviart-Thomas mixed finite element spaces; mixed finite element methods; posteriori error estimates; variational discretization; Aerospace electronics; Approximation methods; Educational institutions; Equations; Finite element methods; Mathematical model; Optimal control; a posteriori error estimates; integro-differential optimal control problems; mixed finite element methods; variational discretization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia Technology (ICMT), 2011 International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-61284-771-9
Type :
conf
DOI :
10.1109/ICMT.2011.6002646
Filename :
6002646
Link To Document :
بازگشت