DocumentCode :
3044614
Title :
Evaluation Criterion of Linear Model Order Selection Approaches Based Average Kullback-Leibler Divergence
Author :
Du Yu-Ming
Author_Institution :
Electron. Eng. Sch., ChengDu Univ. of Inf. Technol., Chengdu, China
Volume :
3
fYear :
2009
fDate :
19-21 May 2009
Firstpage :
180
Lastpage :
183
Abstract :
Average Kullback-Leibler divergence (AKD) between the selected model and the true model is proposed as an available measurement for evaluating different model order selection approaches in simulations. Kullback-Leibler divergence of linear model order is reduced to simple forms, so AKD of linear model can be easily computed. In terms of parameter estimation of linear model, simulation results show that the AKD is a more reasonable measurement than naive methods.
Keywords :
modelling; parameter estimation; reduced order systems; average Kullback-Leibler divergence; evaluation criterion; linear model order selection; parameter estimation; true model; Bayesian methods; Computational modeling; Computer simulation; Information technology; Intelligent systems; Parameter estimation; Signal processing; Signal to noise ratio; Solid modeling; Statistics; AIC; AKD; Linear Model; MDL; MOS;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems, 2009. GCIS '09. WRI Global Congress on
Conference_Location :
Xiamen
Print_ISBN :
978-0-7695-3571-5
Type :
conf
DOI :
10.1109/GCIS.2009.340
Filename :
5209167
Link To Document :
بازگشت