• DocumentCode
    3045879
  • Title

    Adaptive Control System Based on Self-Organizing Wavelet Neural Network with H8 Tracking Performance Compensator

  • Author

    Obayashi, Masanao ; Kamikariya, Takuya ; Uchiyama, S. ; Watada, Shogo ; Kuremoto, Takashi ; Mabu, Shingo ; Kobayashi, Kaoru

  • Author_Institution
    Grad. Sch. of Sci. & Eng., Yamaguchi Univ., Ube, Japan
  • fYear
    2013
  • fDate
    13-16 Oct. 2013
  • Firstpage
    3232
  • Lastpage
    3237
  • Abstract
    Wavelet neural network (WNN) has high function approximation capability, because it consists of neurons, each of which has a localized and vibratory waveform, and the center of the waveform and its scaling and spatial extent/reduction are adjustable. Therefore it has outstanding ability to adapt to changes of environments. In the field of control engineering, Neural Network (NN) and Fuzzy Neural Network (FNN) are often used as a tool of nonlinear control system design. However it is seldom seen that WNN is used for control system designs. There may be one of only few cases that WNN is used as controller whose structure is furthermore fixed and it requires off-line learning to design the control system. In such case, it is difficult to react to change in the environment. So, we propose an adaptive wavelet neural network control system based on WNN with an adaptable self-organizing network structure and with H tracking performance compensator to be robust. In addition, we prove stability of the proposed system by Lyapunov stability analysis. Finally, through inverted pendulum control simulations, we showed the proposed system is superior to other conventional control systems.
  • Keywords
    H control; Lyapunov methods; adaptive control; control engineering computing; control system synthesis; fuzzy neural nets; neurocontrollers; nonlinear control systems; pendulums; self-adjusting systems; waveform analysis; wavelet neural nets; FNN; H tracking performance compensator; Lyapunov stability analysis; WNN; adaptive control system; control engineering; fuzzy neural network; high function approximation capability; inverted pendulum control; localized waveform; nonlinear control system design; self-organizing network; self-organizing wavelet neural network; vibratory waveform; Adaptive control; Biological neural networks; Control systems; Equations; Fuzzy control; Stability analysis; Vectors; Hinfinity tracking performance compensator; adaptive control; self-organizing; wavelet neural network;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference on
  • Conference_Location
    Manchester
  • Type

    conf

  • DOI
    10.1109/SMC.2013.551
  • Filename
    6722304