DocumentCode :
3047120
Title :
Identification of insect damaged wheat kernels using transmittance images
Author :
Cataltepe, Zehra ; Cetin, Enis ; Pearson, Tom
Author_Institution :
Siemens Corp. Res. Inc., Princeton, NJ, USA
Volume :
5
fYear :
2004
fDate :
24-27 Oct. 2004
Firstpage :
2917
Abstract :
We used transmittance images and different learning algorithms to classify insect damaged and un-damaged wheat kernels. Using the histogram of the pixels of the wheat images as the feature, and the linear model as the learning algorithm, we achieved a false positive rate (1-specificity) of 0.2 at the true positive rate (sensitivity) of 0.8 and an area under the ROC curve (AUC) of 0.86. Combining the linear model and a radial basis function network in a committee resulted in a FP rate of 0.1 at the TP rate of 0.8 and an AUC of 0.92.
Keywords :
agricultural products; image classification; image resolution; radial basis function networks; false positive rate; histogram; insect damaged wheat kernel; learning algorithm; linear model; radial basis function network; transmittance image identification; wheat image; Acoustic signal detection; Educational institutions; Histograms; Image segmentation; Infrared detectors; Insects; Kernel; Pixel; Radial basis function networks; Sensitivity;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2004. ICIP '04. 2004 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-8554-3
Type :
conf
DOI :
10.1109/ICIP.2004.1421723
Filename :
1421723
Link To Document :
بازگشت