Title :
A dynamic user adaptive combination strategy for hybrid movie recommendation
Author :
Chen, Cai ; Zeng, Daniel
Author_Institution :
State Key Lab. of Manage. & Control for Complex Syst., Inst. of Autom., Beijing, China
Abstract :
Movie recommendation is a very popular service in internet based movie related websites such as NetFlix, MovieLens. The performance of the recommendation plays the key role in the user experience. Existing works have shown that combining content based and collaborative filtering based algorithms is the best way for movie recommendation. Nevertheless, the performance of this hybrid algorithm is strongly depended on the strategy how to combine the basic pure algorithms. Existing works usually use a static combination strategy which may generate even worse performance for some users. To solve this problems, in this paper we propose a new item based hybrid algorithm that uses a dynamic user adaptive combination strategy. Besides, we also exploit the external open resources IMDB as the movie content data. Experiments on real datasets show that the dynamic user adaptive combination strategy can significantly enhance the performance of the recommendation and the external open resource IMDB is a very good information resource for recommendation.
Keywords :
Web sites; cinematography; collaborative filtering; recommender systems; Internet; MovieLens; NetFlix; collaborative filtering; content based filtering; dynamic user adaptive combination strategy; hybrid movie recommendation; information resource; movie content data; movie related Website; open resources IMDB; static combination strategy; user experience; Algorithm design and analysis; DH-HEMTs; Filtering algorithms; History; Measurement;
Conference_Titel :
Service Operations and Logistics, and Informatics (SOLI), 2012 IEEE International Conference on
Conference_Location :
Suzhou
Print_ISBN :
978-1-4673-2400-7
DOI :
10.1109/SOLI.2012.6273525