DocumentCode :
3050475
Title :
Sequential Bayesian estimation for adaptive classification
Author :
Yoon, Ji ; Roberts, Stephen ; Dyson, Matt ; Gan, John
Author_Institution :
Dept. of Eng. Sci., Univ. of Oxford, Oxford
fYear :
2008
fDate :
20-22 Aug. 2008
Firstpage :
601
Lastpage :
605
Abstract :
This paper proposes a robust algorithm to adapt a model for EEG signal classification using a modified extended Kalman filter (EKF). By applying Bayesian conjugate priors and marginalising the parameters, we can avoid the needs to estimate the covariances of the observation and hidden state noises. In addition, Laplace approximation is employed in our model to approximate non-Gaussian distributions as Gaussians.
Keywords :
Bayes methods; Gaussian distribution; Kalman filters; approximation theory; electroencephalography; medical signal processing; signal classification; EEG signal classification; Gaussian distribution; Laplace approximation; adaptive classification; extended Kalman filter; sequential Bayesian estimation; Bayesian methods; Brain modeling; Computer interfaces; Electroencephalography; Gallium nitride; Gaussian approximation; Logistics; Noise robustness; Signal processing algorithms; State-space methods; Extended Kalman filter; Laplace Approximation; Marginalisation; Nonlinear dynamics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008. IEEE International Conference on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-2143-5
Electronic_ISBN :
978-1-4244-2144-2
Type :
conf
DOI :
10.1109/MFI.2008.4648010
Filename :
4648010
Link To Document :
بازگشت