• DocumentCode
    3051638
  • Title

    Histogram clustering for unsupervised image segmentation

  • Author

    Puzicha, Jan ; Hofmann, Thomas ; Buhmann, Joachim M.

  • Author_Institution
    Inst. fur Inf. III, Bonn Univ., Germany
  • Volume
    2
  • fYear
    1999
  • fDate
    1999
  • Abstract
    This paper introduces a novel statistical mixture model for probabilistic grouping of distributional (histogram) data. Adopting the Bayesian framework, we propose to perform annealed maximum a posteriori estimation to compute optimal clustering solutions. In order to accelerate the optimization process, an efficient multiscale formulation is developed. We present a prototypical application of this method for the unsupervised segmentation of textured images based on local distributions of Gabor coefficients. Benchmark results indicate superior performance compared to K-means clustering and proximity-based algorithms
  • Keywords
    Bayes methods; image segmentation; optimisation; unsupervised learning; Bayesian framework; Gabor coefficients; K-means clustering; annealed maximum a posteriori estimation; benchmark results; distributional data; histogram clustering; histogram data; local distributions; multiscale formulation; optimal clustering; probabilistic grouping; proximity-based algorithms; statistical mixture model; unsupervised image segmentation; Acceleration; Annealing; Bayesian methods; Clustering algorithms; Clustering methods; Computer science; Histograms; Image segmentation; Maximum a posteriori estimation; Quantization;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on.
  • Conference_Location
    Fort Collins, CO
  • ISSN
    1063-6919
  • Print_ISBN
    0-7695-0149-4
  • Type

    conf

  • DOI
    10.1109/CVPR.1999.784981
  • Filename
    784981