DocumentCode :
3052076
Title :
Unscented information filtering method for reducing multiple sensor registration error
Author :
Kim, Y.S. ; Lee, J.H. ; Do, H.M. ; Kim, B.K. ; Tanikawa, T. ; Ohba, K. ; Lee, G. ; Yun, S.H.
Author_Institution :
Ubiquitous Functions Res. Group, AIST, Tsukuba
fYear :
2008
fDate :
20-22 Aug. 2008
Firstpage :
326
Lastpage :
331
Abstract :
In this paper, new filtering method for sensor registration is provided to estimate and correct error of registration parameters in multiple sensor environments. Sensor registration is based on filtering method to estimate registration parameters in multiple sensor environments. Accuracy of sensor registration can increase performance of data fusion method selected. Due to various error sources, the sensor registration has registration errors recognized as multiple objects even though multiple sensors are tracking one object. In order to estimate the error parameter, new nonlinear information filtering method is developed using minimum mean square error estimation. Instead of linearization of nonlinear function like an extended Kalman filter, information estimation through unscented prediction is used. The proposed method enables to reduce estimation error without a computation of the Jacobian matrix in case that measurement dimension is large. A computer simulation is carried out to evaluate the proposed filtering method with an extended Kalman filter.
Keywords :
Jacobian matrices; Kalman filters; filtering theory; least mean squares methods; sensor fusion; Jacobian matrix; data fusion method; extended Kalman filter; mean square error estimation; multiple sensor environments; multiple sensor registration error; nonlinear information filtering method; object tracking; unscented information filtering method; Error correction; Estimation error; Information filtering; Information filters; Kalman filters; Maximum likelihood estimation; Mean square error methods; Parameter estimation; Sensor fusion; Sensor systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008. IEEE International Conference on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-2143-5
Electronic_ISBN :
978-1-4244-2144-2
Type :
conf
DOI :
10.1109/MFI.2008.4648086
Filename :
4648086
Link To Document :
بازگشت