Title :
A session-oriented retrieval model based on Markov random field
Author :
Yasi Gao ; Chuang Zhang
Author_Institution :
Pattern Recognition & Intell. Syst. Lab., Beijing Univ. of Posts & Telecommun., Beijing, China
Abstract :
In this paper, we study how to use the search session information to improve the retrieval accuracy. We propose a session-oriented retrieval model based on Markov random field. This model introduces the correlations between query terms as a retrieval factor into the retrieval process. It also presents a dynamic update algorithm based on the analysis of users´ search behavior. Our model implements a complete session-oriented information retrieval framework finally. We use ClueWeb09 category B dataset and TREC 2010 (2011) Session dataset to quantitatively evaluate the model. Experimental results show that our model can improve retrieval performance substantially using the search session information.
Keywords :
Markov processes; information retrieval; ClueWeb09 category B dataset; Markov random field; TREC 2010; complete session-oriented information retrieval framework; dynamic update algorithm; retrieval accuracy; retrieval performance; retrieval process; search session information; session-oriented retrieval model; Accuracy; Analytical models; Helium; Information retrieval; Joints; Markov random fields; Mathematical model; Implicit feedback; Information retrieval; Markov random field; Search session; Term dependence;
Conference_Titel :
Network Infrastructure and Digital Content (IC-NIDC), 2012 3rd IEEE International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4673-2201-0
DOI :
10.1109/ICNIDC.2012.6418834