DocumentCode :
3057957
Title :
Nonlinear MISO modeling using genetic programming
Author :
Maust, Reid S. ; Klein, Ronald L.
Author_Institution :
Dept. of Comput. Sci. & Electr. Eng., West Virginia Univ., Morgantown, WV, USA
fYear :
1998
fDate :
8-10 Mar 1998
Firstpage :
42
Lastpage :
46
Abstract :
An algebraic model for an unknown, nonlinear, MISO (multiple input, single output) system is derived from a table of the system´s input and output values. Genetic programming is used to find a model that is optimal (or nearly optimal) with respect to a nonlinear performance index. In order to apply genetic programming to this task, an encoding strategy to represent the model is devised. Then, specialized genetic operators are defined to refine the solution. The technique is shown to produce a good model for a simple nonlinear example having two inputs and one output
Keywords :
genetic algorithms; modelling; multivariable systems; nonlinear systems; algebraic model; genetic programming; nonlinear MISO modeling; nonlinear performance index; unknown nonlinear MISO system; Additive noise; Computer science; Encoding; Genetic algorithms; Genetic programming; Input variables; Noise measurement; Performance analysis; Temperature; Wind speed;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
System Theory, 1998. Proceedings of the Thirtieth Southeastern Symposium on
Conference_Location :
Morgantown, WV
ISSN :
0094-2898
Print_ISBN :
0-7803-4547-9
Type :
conf
DOI :
10.1109/SSST.1998.660017
Filename :
660017
Link To Document :
بازگشت