Title :
Image coding using Markov models with hidden states
Author :
Forchhammer, Søren
Author_Institution :
Dept. of Telecommun., Tech. Univ., Lyngby, Denmark
Abstract :
Summary form only given. Lossless image coding may be performed by applying arithmetic coding sequentially to probabilities conditioned on the past data. Therefore the model is very important. A new image model is applied to image coding. The model is based on a Markov process involving hidden states. An underlying Markov process called the slice process specifies D rows with the width of the image. Each new row of the image coincides with row N of an instance of the slice process. The N-1 previous rows are read from the causal part of the image and the last D-N rows are hidden. This gives a description of the current row conditioned on the N-1 previous rows. From the slice process we may decompose the description into a sequence of conditional probabilities, involving a combination of a forward and a backward pass. In effect the causal part of the last N rows of the image becomes the context. The forward pass obtained directly from the slice process starts from the left for each row with D-N hidden rows. The backward pass starting from the right additionally has the current row as hidden. The backward pass may be described as a completion of the forward pass. It plays the role of normalizing the possible completions of the forward pass for each pixel. The hidden states may effectively be represented in a trellis structure as in an HMM. For the slice process we use a state of D rows and V-1 columns, thus involving V columns in each transition. The new model was applied to a bi-level image (SO9 of the JBIG test set) in a two-part coding scheme
Keywords :
arithmetic codes; data compression; hidden Markov models; image coding; probability; sequential codes; trellis codes; HMM; backward pass; bi-level image; conditional probabilities; forward backward pass; hidden Markov models; hidden states; image model; lossless image coding; sequential arithmetic coding; slice process; trellis structure; two-part coding; Arithmetic; Costs; Entropy; Hidden Markov models; Image coding; Length measurement; Markov processes; Optimization methods; Testing;
Conference_Titel :
Data Compression Conference, 1999. Proceedings. DCC '99
Conference_Location :
Snowbird, UT
Print_ISBN :
0-7695-0096-X
DOI :
10.1109/DCC.1999.785681