DocumentCode :
3061852
Title :
A simple message-passing algorithm for compressed sensing
Author :
Chandar, Venkat ; Shah, Devavrat ; Wornell, Gregory W.
Author_Institution :
Dept. EECS, MIT, Cambridge, MA, USA
fYear :
2010
fDate :
13-18 June 2010
Firstpage :
1968
Lastpage :
1972
Abstract :
We consider the recovery of a nonnegative vector x from measurements y = Ax, where A ∈ {0, 1}m×n. We establish that when A corresponds to the adjacency matrix of a bipartite graph with sufficient expansion, a simple message-passing algorithm produces an estimate x^ of x satisfying ∥x-x^∥1 ≤ O(n/k) ∥x-x(k)∥1, where x(k) is the best k-sparse approximation of x. The algorithm performs O(n(log(n/k))2 log (k)) computation in total, and the number of measurements required is m = O(k log(n/k)). In the special case when x is k-sparse, the algorithm recovers x exactly in time O(n log(n/k) log(k)). Ultimately, this work is a further step in the direction of more formally developing the broader role of message-passing algorithms in solving compressed sensing problems.
Keywords :
approximation theory; computational complexity; graph theory; message passing; signal processing; bipartite graph; compressed sensing problem; k-sparse approximation; message-passing algorithm; Algorithm design and analysis; Approximation algorithms; Bipartite graph; Compressed sensing; Decoding; Error correction codes; Parity check codes; Performance analysis; Sparse matrices; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on
Conference_Location :
Austin, TX
Print_ISBN :
978-1-4244-7890-3
Electronic_ISBN :
978-1-4244-7891-0
Type :
conf
DOI :
10.1109/ISIT.2010.5513358
Filename :
5513358
Link To Document :
بازگشت