DocumentCode :
3061919
Title :
CFAR hierarchical clustering of polarimetric SAR data
Author :
Formont, P. ; Veganzones, M.A. ; Frontera-Pons, J.M. ; Pascal, F. ; Ovarlez, J.-P. ; Chanussot, Jocelyn
Author_Institution :
SONDRA, Supelec, Gif-sur-Yvette, France
fYear :
2013
fDate :
21-26 July 2013
Firstpage :
2461
Lastpage :
2464
Abstract :
Recently, a general approach for high-resolution polarimetric SAR (POLSAR) data classification in heterogeneous clutter was presented, based on a statistical test of equality of covariance matrices. Here, we extend that approach by taking advantage of the Constant False Alarm Ratio (CFAR) property of the statistical test in order to improve the clustering process. We show that the CFAR property can be used in the hierarchical segmentation of the POLSAR data images to automatically detect the number of clusters. The proposed method will be applied on a high-resolution polarimetric data set acquired by the ONERA RAMSES system.
Keywords :
covariance matrices; data acquisition; image classification; image resolution; image segmentation; pattern clustering; radar clutter; radar polarimetry; statistical testing; CFAR hierarchical clustering; ONERA RAMSES system; automatically cluster detection; constant false alarm ratio; covariance matrices equality; data classification; heterogeneous clutter; hierarchical POLSAR data image segmentation; high resolution polarimetric data set acquisition; polarimetric SAR data; spherically invariant random vector; statistical test; Clustering algorithms; Clutter; Couplings; Covariance matrices; Merging; Signal processing; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International
Conference_Location :
Melbourne, VIC
ISSN :
2153-6996
Print_ISBN :
978-1-4799-1114-1
Type :
conf
DOI :
10.1109/IGARSS.2013.6723319
Filename :
6723319
Link To Document :
بازگشت