DocumentCode :
3062062
Title :
UEP-optimal convolutional encoders with smallest McMillan degree
Author :
Wang, Chung-Hsuan ; Wu, Wei-Fan ; Weng, Jian-Jia
Author_Institution :
Dept. of Electr. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan
fYear :
2010
fDate :
13-18 June 2010
Firstpage :
2028
Lastpage :
2032
Abstract :
In this paper, convolutional encoders are studied for unequal error protection (UEP) from an algebraic theoretical viewpoint. Given any convolutional code, UEP-optimal encoders with the smallest McMillan degree are constructed to minimize the coding complexity. The noncatastrophic property of encoder is also maintained to avoid the undesired catastrophic propagation of decoding errors.
Keywords :
algebraic codes; communication complexity; convolutional codes; decoding; McMillan degree; UEP-optimal convolutional encoders; algebraic theoretical viewpoint; catastrophic propagation; coding complexity; decoding errors; noncatastrophic property; unequal error protection; Block codes; Convolutional codes; Decoding; Delay; Encoding; Error correction codes; Linear matrix inequalities; Polynomials; Protection; Viterbi algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on
Conference_Location :
Austin, TX
Print_ISBN :
978-1-4244-7890-3
Electronic_ISBN :
978-1-4244-7891-0
Type :
conf
DOI :
10.1109/ISIT.2010.5513368
Filename :
5513368
Link To Document :
بازگشت