DocumentCode :
306628
Title :
Optimal control of rigid body angular velocity with quadratic cost
Author :
Tsiotras, Panagiotis ; Corless, Martin ; Rotea, Mario
Author_Institution :
Dept. of Mech., Aerosp. & Nucl. Eng., Virginia Univ., Charlottesville, VA, USA
Volume :
2
fYear :
1996
fDate :
11-13 Dec 1996
Firstpage :
1630
Abstract :
In this paper we consider the problem of obtaining optimal controllers which minimize a quadratic cost function for the rotational motion of a rigid body. We are not concerned with the attitude of the body and we consider only the evolution of the angular velocity as described by Euler´s equations. We obtain conditions which guarantee the existence of linear stabilizing optimal and suboptimal controllers. These controllers have a very simple structure
Keywords :
angular velocity control; control system synthesis; minimisation; optimal control; Euler´s equations; angular velocity evolution; linear stabilizing optimal control; quadratic cost; quadratic cost function minimization; rigid body angular velocity; rotational motion; suboptimal control; Aerospace control; Aerospace engineering; Angular velocity; Cost function; Motion control; Nonlinear equations; Optimal control; Riccati equations; Sufficient conditions; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1996., Proceedings of the 35th IEEE Conference on
Conference_Location :
Kobe
ISSN :
0191-2216
Print_ISBN :
0-7803-3590-2
Type :
conf
DOI :
10.1109/CDC.1996.572769
Filename :
572769
Link To Document :
بازگشت