DocumentCode :
3066765
Title :
ARMA spectral estimation based on non-linear least squares
Author :
Fan, X. ; Younan, N.H. ; Taylor, C.D.
Author_Institution :
Dept. of Electr. & Comput. Eng., Mississippi State Univ., MS, USA
fYear :
1992
fDate :
12-15 Apr 1992
Firstpage :
673
Abstract :
An autoregressive moving average (ARMA) spectral estimation method based on the nonlinear least squares technique is presented. Simultaneous estimates of the AR and MA parameters are obtained by minimizing the prediction error using the Levenburg-Marqudit optimal search algorithm. If the model order is properly selected, it can be shown that this technique converges to the true model parameter values assuming that the model is stable and minimum phase. This technique is valid when applied to non-Gaussian white noise. Results for simulated data are presented to illustrate the application and accuracy of the technique
Keywords :
least squares approximations; parameter estimation; spectral analysis; statistical analysis; white noise; ARMA spectral estimation; Levenburg-Marqudit optimal search algorithm; accuracy; autoregressive moving average; nonGaussian white noise; nonlinear least squares technique; parameter estimation; prediction error minimisation; Chromium; Filters; Least squares approximation; Maximum likelihood estimation; Noise shaping; Parameter estimation; Predictive models; Signal to noise ratio; State estimation; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Southeastcon '92, Proceedings., IEEE
Conference_Location :
Birmingham, AL
Print_ISBN :
0-7803-0494-2
Type :
conf
DOI :
10.1109/SECON.1992.202281
Filename :
202281
Link To Document :
بازگشت