DocumentCode :
3067371
Title :
Invariant manifolds for time-discretizations of nonlinear systems
Author :
Elliott, D.E.
Author_Institution :
Washington University, St. Louis, MO
fYear :
1985
fDate :
11-13 Dec. 1985
Firstpage :
724
Lastpage :
726
Abstract :
Some computational experiments have shown that one can design difference methods for differential equations and control systems with the property that the resulting difference equations will live on, or uniformly near, a specified constraint-manifold. Here a few concrete results are given: systems that live on manifolds defined by sets of quadratic forms should be discretized by the midpoint method, which gives a system living on the same manifold; and for discretizations of autonomous Hamiltonian systems by either the midpoint or updated-Euler methods, the first few terms of an asymptotic expansion for (approximate) invariant energy-functions can be obtained easily.
Keywords :
Chaos; Concrete; Continuous time systems; Control systems; Design methodology; Difference equations; Error correction; Nonlinear control systems; Nonlinear systems; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1985 24th IEEE Conference on
Conference_Location :
Fort Lauderdale, FL, USA
Type :
conf
DOI :
10.1109/CDC.1985.268592
Filename :
4048392
Link To Document :
بازگشت