DocumentCode :
3069161
Title :
A neural network based parametrization method for distributed parameter identification
Author :
Sun, M. ; Zheng, C.
Author_Institution :
Dept. of Math., Alabama Univ., Tuscaloosa, AL, USA
fYear :
1998
fDate :
8-10 Mar 1998
Firstpage :
361
Lastpage :
365
Abstract :
We consider distributed parameter systems governed by elliptic or parabolic partial differential equations with an unknown coefficient that is spatially varying over a certain domain. We propose an identification procedure that combines neural classification, zonation, function interpolation, and optimization search. There are at least two major advantages of this approach: classification capability without a priori assumptions regarding zone shape, zone number, and zone configuration of unknown parameters, and incorporation of uncertainty in the observation data into the identification procedure. We consider aquifer parameter identification as an example
Keywords :
distributed parameter systems; elliptic equations; groundwater; neural nets; parabolic equations; parameter estimation; partial differential equations; pattern classification; search problems; aquifer; distributed parameter identification; elliptic partial differential equations; function interpolation; neural classification; neural network based parametrization method; neural zonation; optimization search; parabolic partial differential equations; unknown coefficient; Distributed parameter systems; Interpolation; Least squares methods; Mathematics; Neural networks; Parameter estimation; Partitioning algorithms; Shape; Sun; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
System Theory, 1998. Proceedings of the Thirtieth Southeastern Symposium on
Conference_Location :
Morgantown, WV
ISSN :
0094-2898
Print_ISBN :
0-7803-4547-9
Type :
conf
DOI :
10.1109/SSST.1998.660096
Filename :
660096
Link To Document :
بازگشت