DocumentCode :
3069855
Title :
Radon transform theory for random fields and optimum image reconstruction from noisy projections
Author :
Jain, Anil K. ; Ansari, Siamak
Author_Institution :
University of California, Davis, California
Volume :
9
fYear :
1984
fDate :
30742
Firstpage :
495
Lastpage :
498
Abstract :
In this paper we present some new results on Radon transform theory for stationary random fields. In particular we present a new projection theorem which gives the relation between the power spectrum density of one dimensional projections of a stationary random field and its two dimensional power spectrum density. This result yields the optimum mean square reconstruction filter from noisy projections and is useful in other problems such as multidimensional spectral estimation from one dimensional projections, noise analysis in computed tomography, etc. Example are given to demonstrate the usefulness of these results.
Keywords :
Computed tomography; Convolution; Filters; Fourier transforms; Frequency response; Image processing; Image reconstruction; Laboratories; Signal processing; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP '84.
Type :
conf
DOI :
10.1109/ICASSP.1984.1172341
Filename :
1172341
Link To Document :
بازگشت