Title :
Nonlinearities enhance parameter convergence: the strict-feedback case
Author :
Lin, Jung-Shan ; Kanellakopoulos, Ioannis
Author_Institution :
Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA
Abstract :
Following the development of a parameter convergence analysis procedure for output-feedback nonlinear systems, we shift our attention to strict-feedback nonlinear systems. We develop an analytic procedure which allows us, given a specific nonlinear system and a specific reference signal, to determine a priori whether or not the parameter estimates will converge to their true values, simply by checking the linear independence of the rows of a constant real matrix. Moreover, we show that this convergence is exponential. Finally, we prove that even if the rows of this constant matrix are not linearly independent, partial parameter convergence is still achieved, in the sense that the parameter error vector converges asymptotically to the left null space of this matrix
Keywords :
control nonlinearities; convergence; feedback; matrix algebra; nonlinear systems; parameter estimation; constant real matrix; convergence; nonlinear systems; nonlinearities; parameter convergence; parameter error vector; parameter estimation; strict-feedback; Computer aided software engineering; Convergence; Design methodology; Nonlinear control systems; Nonlinear systems; Parameter estimation; Sea measurements; Stability; State feedback; Vectors;
Conference_Titel :
Decision and Control, 1996., Proceedings of the 35th IEEE Conference on
Conference_Location :
Kobe
Print_ISBN :
0-7803-3590-2
DOI :
10.1109/CDC.1996.573573