• DocumentCode
    307010
  • Title

    Nonlinearities enhance parameter convergence: the strict-feedback case

  • Author

    Lin, Jung-Shan ; Kanellakopoulos, Ioannis

  • Author_Institution
    Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA
  • Volume
    3
  • fYear
    1996
  • fDate
    11-13 Dec 1996
  • Firstpage
    2962
  • Abstract
    Following the development of a parameter convergence analysis procedure for output-feedback nonlinear systems, we shift our attention to strict-feedback nonlinear systems. We develop an analytic procedure which allows us, given a specific nonlinear system and a specific reference signal, to determine a priori whether or not the parameter estimates will converge to their true values, simply by checking the linear independence of the rows of a constant real matrix. Moreover, we show that this convergence is exponential. Finally, we prove that even if the rows of this constant matrix are not linearly independent, partial parameter convergence is still achieved, in the sense that the parameter error vector converges asymptotically to the left null space of this matrix
  • Keywords
    control nonlinearities; convergence; feedback; matrix algebra; nonlinear systems; parameter estimation; constant real matrix; convergence; nonlinear systems; nonlinearities; parameter convergence; parameter error vector; parameter estimation; strict-feedback; Computer aided software engineering; Convergence; Design methodology; Nonlinear control systems; Nonlinear systems; Parameter estimation; Sea measurements; Stability; State feedback; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1996., Proceedings of the 35th IEEE Conference on
  • Conference_Location
    Kobe
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-3590-2
  • Type

    conf

  • DOI
    10.1109/CDC.1996.573573
  • Filename
    573573