• DocumentCode
    3070652
  • Title

    A Minimax Regret Approach to Robust Beamforming

  • Author

    Byun, Jungsub ; Mutapcic, Almir ; Kim, Seung-Jean ; Cioffi, John M.

  • Author_Institution
    Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA
  • fYear
    2009
  • fDate
    20-23 Sept. 2009
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    Abstract-This article describes a minimax regret approach to robust beamforming with an ellipsoidal uncertainty model for a steering vector, in which the objective is to minimize the worstcase regret over the uncertainty set, where ´worst´ means largest. This problem can be solved efficiently by using an iterative method which uses an alternating sequence of optimization and worst-case analysis steps. Each of the two steps amounts to solving a convex optimization problem. The method typically converges to a solution within 5 iterations. The minimax regret beamforming is illustrated with numerical examples in planar random array antennas. The numerical results show that the minimax regret approach is less pessimistic (less conservative) and provides more robust performance than the worst-case SINR maximization (maximin) approach, where ´worst´ means smallest.
  • Keywords
    iterative methods; planar antenna arrays; convex optimization problem; ellipsoidal uncertainty model; iterative method; minimax regret beamforming; planar random array antennas; robust beamforming; steering vector; Antenna arrays; Array signal processing; Decision making; Minimax techniques; Optimization methods; Performance loss; Robustness; Sensor arrays; Signal to noise ratio; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Vehicular Technology Conference Fall (VTC 2009-Fall), 2009 IEEE 70th
  • Conference_Location
    Anchorage, AK
  • ISSN
    1090-3038
  • Print_ISBN
    978-1-4244-2514-3
  • Electronic_ISBN
    1090-3038
  • Type

    conf

  • DOI
    10.1109/VETECF.2009.5378979
  • Filename
    5378979