Title :
Image Super-Resolution Based on MCA and Wavelet-Domain HMT
Author :
Lijun, Shen ; ZhiYun, Xiao ; Hua, Han
Author_Institution :
Coll. of Inf. Eng., Inner Mongolia Univ. of Technol., Hohhot, China
Abstract :
In this paper we propose an image super-resolution algorithm using The Morphological Component Analysis(MCA) and wavelet-domain Hidden Markov Tree(HMT) model. The MCA is a useful method for signal decomposing, using proper basis, we could separate features contained in a signal when these features present different morphological aspects. Wavelet-domain HMT models the dependencies of multiscale wavelet coefficients through the state probabilities of wavelet coefficients. In this paper, we first decompose an image into texture and piecewise smooth (cartoon) parts, then enlarge the cartoon part with interpolation, because wavelet-domain HMT accurately characterizes the statistics of real-world images, we specify it as the prior distribution and then formulate the image super-resolution problem as a constrained optimization problem to acquire the enlarged texture part, finally we get a fine result.
Keywords :
Markov processes; image resolution; image texture; optimisation; wavelet transforms; MCA; constrained optimization problem; hidden Markov tree model; image super-resolution algorithm; morphological component analysis; multiscale wavelet coefficients; signal decomposing; wavelet-domain HMT models; Hidden Markov models; Image resolution; Pixel; Signal resolution; Silicon; Wavelet coefficients; Image Super-resolution; MCA; Wavelet-Domain HMT; image Decompose;
Conference_Titel :
Information Technology and Applications (IFITA), 2010 International Forum on
Conference_Location :
Kunming
Print_ISBN :
978-1-4244-7621-3
Electronic_ISBN :
978-1-4244-7622-0
DOI :
10.1109/IFITA.2010.45