DocumentCode :
3074190
Title :
A new method for solving generalized Bezout identity
Author :
Fang, Chun Hsiung ; Chang, Fan Ren
Author_Institution :
Dept. of Electr. Eng., Nat. Kaohsiung Inst. of Technol., Taiwan
fYear :
1990
fDate :
5-7 Dec 1990
Firstpage :
2925
Abstract :
Several formulas for finding the generalized Bezout identity elements in polynomial matrix form are derived. To obtain those elements one need only construct an observer-form realization, determine a real number, solve a pole-assignment problem, and perform some algebraic manipulations. The developed results allow one to compute generalized Bezout identity elements with existing software packages
Keywords :
linear systems; matrix algebra; poles and zeros; polynomials; system theory; Bezout identity; linear systems; pole-assignment; polynomial matrix; real number; system theory; Eigenvalues and eigenfunctions; Polynomials; Software packages; System analysis and design;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1990., Proceedings of the 29th IEEE Conference on
Conference_Location :
Honolulu, HI
Type :
conf
DOI :
10.1109/CDC.1990.203319
Filename :
203319
Link To Document :
بازگشت