DocumentCode
3076
Title
Online Parameter Estimation for Temporal Spectrum Sensing
Author
Yuandao Sun ; Mark, Brian L. ; Ephraim, Yariv
Author_Institution
Dept. of Electr. & Comput. Eng., George Mason Univ., Fairfax, VA, USA
Volume
14
Issue
8
fYear
2015
fDate
Aug. 2015
Firstpage
4105
Lastpage
4114
Abstract
We develop a computationally efficient online parameter estimation algorithm for temporal spectrum sensing of a cognitive radio channel using a hidden bivariate Markov model. The online estimator is based on a block-recursive parameter estimation algorithm developed by Rydén for hidden Markov models. This approach requires the score function only. We develop an efficient method for computing the score function recursively and extend Rydén´s approach to hidden bivariate Markov models. The advantage of the hidden bivariate Markov model over the hidden Markov model is its ability to characterize non-geometric state sojourn time distributions, which can be crucial in spectrum sensing. Based on the hidden bivariate Markov model, an estimate of the future state of the primary user can be obtained, which can be used to reduce harmful interference and improve channel utilization. Moreover, the online estimator can adapt to changes in the statistical characteristics of the primary user. We present numerical results that demonstrate the performance of temporal spectrum sensing using the proposed online parameter estimator.
Keywords
cognitive radio; hidden Markov models; parameter estimation; radio spectrum management; radiofrequency interference; state estimation; statistical distributions; wireless channels; Rydén´s approach; block-recursive parameter estimation algorithm; channel utilization improvement; cognitive radio channel; computationally efficient online parameter estimation algorithm; future state estimation; harmful interference reduction; hidden bivariate Markov model; nongeometric state sojourn time distribution characterization; primary user; score function; temporal spectrum sensing; Estimation; Hidden Markov models; Markov processes; Parameter estimation; Sensors; Vectors; Wireless communication; Cognitive radio; hidden Markov model; hidden Markov model (HMM); online estimation; recursive estimation; spectrum sensing;
fLanguage
English
Journal_Title
Wireless Communications, IEEE Transactions on
Publisher
ieee
ISSN
1536-1276
Type
jour
DOI
10.1109/TWC.2015.2416720
Filename
7069196
Link To Document