• DocumentCode
    3076522
  • Title

    An optimizing design strategy for multiple model adaptive estimation and control

  • Author

    Sheldon, Stuart N. ; Maybeck, Peter S.

  • Author_Institution
    US Air Force Inst. of Technol., Wright-Patterson AFB, OH, USA
  • fYear
    1990
  • fDate
    5-7 Dec 1990
  • Firstpage
    3522
  • Abstract
    A method for designing multiple model adaptive estimators to provide combined state and parameter estimation in the presence of an uncertain parameter vector is proposed. It is assumed that the parameter varies over a continuous region and a finite number of constant gain filters are available for the estimation. The estimator elemental filters are chosen by minimizing a cost functional representing the average regulation error autocorrelation, with the average taken as the true parameter ranges over the admissible parameter set. An example is used to demonstrate the improvement in performance over previously accepted design methods
  • Keywords
    Kalman filters; adaptive control; control system synthesis; parameter estimation; state estimation; Kalman filters; average regulation error autocorrelation; control system synthesis; estimator elemental filters; multiple model adaptive estimation; multiple model adaptive regulator; optimizing design strategy; parameter estimation; state estimation; uncertain parameter vector; Adaptive estimation; Adaptive filters; Autocorrelation; Cost function; Current measurement; Density measurement; Design optimization; Parameter estimation; Probability; State estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1990., Proceedings of the 29th IEEE Conference on
  • Conference_Location
    Honolulu, HI
  • Type

    conf

  • DOI
    10.1109/CDC.1990.203479
  • Filename
    203479