DocumentCode :
3076580
Title :
Two new algorithms for sequential parameter estimation with unknown but bounded noise
Author :
Belforte, G. ; Tay, T.T.
Author_Institution :
Dipartimento di Autom. e Inf., Politecnico di Torino, Italy
fYear :
1990
fDate :
5-7 Dec 1990
Firstpage :
3546
Abstract :
Two algorithms for sequential parameter identification when the measurement errors are not statistically described are introduced. These are the projection estimate algorithm and the central estimate algorithm. Their convergence properties are illustrated, and a comparison with existing algorithms is performed. In practical applications it seems that the best choice for sequential parameter identification is the algorithm that gives the projection estimate. It is computationally lighter than the algorithm that computes the central estimate, and requires only the knowledge of the relative weights of the measurement errors and not their actual values
Keywords :
convergence; parameter estimation; central estimate algorithm; convergence; measurement errors; projection estimate algorithm; sequential parameter estimation; Automatic control; Convergence; Covariance matrix; Digital control; Linear systems; Measurement errors; Parameter estimation; Performance evaluation; Recursive estimation; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1990., Proceedings of the 29th IEEE Conference on
Conference_Location :
Honolulu, HI
Type :
conf
DOI :
10.1109/CDC.1990.203483
Filename :
203483
Link To Document :
بازگشت