DocumentCode :
3077513
Title :
Fundamental theorem of linear state feedback for singular systems
Author :
Ozcaldiran, Kadri
Author_Institution :
Dept. of Electr. & Electron. Eng., Bogazici Univ., Istanbul
fYear :
1990
fDate :
5-7 Dec 1990
Firstpage :
67
Abstract :
The problem is solved of simultaneously assigning the finite and infinite eigenstructure of the controllable singular system Ex´(t)=Ax(t)+Bu(t) by the proportional state feedback law u(t)=Fx(t). Given m monic polynomials d1(s), . . .,dm(s) of degrees d1,. . ., dm satisfying di+1(s)|di(s), and η (η=nullity of E) nonnegative integers p1, . . .,pη d1+. . .+d m+p1+pη=rank E, necessary and sufficient conditions are established for the existence of a real feedback map F so that the di(s)´s are the invariant polynomials and the pi´s are the infinite pole orders of the closed-loop system Ex´(t)=(A+BF)x(t)
Keywords :
closed loop systems; eigenvalues and eigenfunctions; feedback; poles and zeros; polynomials; closed-loop system; eigenstructure; infinite pole orders; invariant polynomials; linear state feedback; monic polynomials; real feedback map; singular systems; Artificial intelligence; Control systems; Controllability; Linear matrix inequalities; Linear systems; Polynomials; Proportional control; State feedback; Sufficient conditions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1990., Proceedings of the 29th IEEE Conference on
Conference_Location :
Honolulu, HI
Type :
conf
DOI :
10.1109/CDC.1990.203548
Filename :
203548
Link To Document :
بازگشت