DocumentCode :
3079934
Title :
Multichannel time varying autoregressive modeling: a circular lattice-smoothness priors realization
Author :
Gersch, Will ; Stone, David
Author_Institution :
Dept. of Inf. & Comput. Sci., Hawaii Univ., Honolulu, HI, USA
fYear :
1990
fDate :
5-7 Dec 1990
Firstpage :
859
Abstract :
An algorithm for multichannel time varying autoregressive (MCTVAR) modeling of nonstationary covariance time series data is shown. The multichannel modeling is achieved by doing things one channel at a time using only scalar computations. The method exploits the smoothness priors modeling (W. Gersch and G. Kitagawa, 1988) of partial correlation coefficients in a time-varying linear regression model and the `circular lattice-form´ structure (H. Sakai, 1982) for multichannel stationary time series modeling. The circular lattice structure permits the multichannel model to be realized one channel at a time. Smoothness priors permit fitting the MCTVAR model with the explicit computation of only a small number of hyperparameters. An example is shown
Keywords :
filtering and prediction theory; time series; circular lattice-form; circular lattice-smoothness priors realization; multichannel time varying autoregressive modelling; nonstationary covariance time series; partial correlation coefficients; scalar computations; time-varying linear regression model; Brain modeling; Covariance matrix; Econometrics; Electroencephalography; Filters; Humans; Lattices; Linear regression; Polynomials; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1990., Proceedings of the 29th IEEE Conference on
Conference_Location :
Honolulu, HI
Type :
conf
DOI :
10.1109/CDC.1990.203710
Filename :
203710
Link To Document :
بازگشت