Title :
Complete bi-decomposition of multiple-valued functions using MIN and MAX gates
Author :
Steinbach, Bernd ; Lang, Christian
Author_Institution :
TU Bergakademie Freiberg, Germany
Abstract :
In this paper we apply the bi-decomposition on multivalued functions and restrict the decomposition to MIN and MAX gates. It is known from (A. Mishchenko et al., 2001) that the MIN and MAX bi-decomposition leads in general to small multi-level circuits, well understandable for humans. Unfortunately, there does not exist a MIN or MAX bi-decomposition for each multi-valued function. In this paper we close this gap by the MAX-MIN multi-decomposition. Experimental results show that our complete decomposition of a set of benchmarks requires approximately the same sum of gates and literals as the known incomplete approach and the number of logic levels could even be reduced in average by 20 percent.
Keywords :
benchmark testing; logic gates; multivalued logic; multivalued logic circuits; MAX bi-decomposition; MAX gates; MIN gates; benchmark testing; multilevel circuit; multiple-valued function; multivalued function set; Circuits; Data structures; Delay; Humans; Minimization; Multivalued logic; Testing; Upper bound;
Conference_Titel :
Multiple-Valued Logic, 2005. Proceedings. 35th International Symposium on
Print_ISBN :
0-7695-2336-6
DOI :
10.1109/ISMVL.2005.14