Title :
A Learning-Based Network Selection Method in Heterogeneous Wireless Systems
Author :
Tabrizi, Haleh ; Farhadi, Golnaz ; Cioffi, John
Author_Institution :
Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA
Abstract :
With the coexistence of various wireless technologies, next generation wireless communications will likely consist of an integrated system of networks, where the Access Points (APs) and Base Stations (BSs) work together to maximize the mobile-user Quality of Service (QoS). In such heterogeneous environment where handheld devices with different access technologies are not uncommon, it should be possible to select networks and seamlessly switch from one AP/BS to another in order to elevate user performance. In this paper, this type of network selection and handover mechanism with the goal of maximizing QoS is formulated as a Markov Decision Process (MDP). An algorithm based on Reinforcement Learning (RL) is then obtained that selects the best network based not only on the current network load but also the potential future network states. This algorithm aims at balancing the number of handovers and the achievable QoS. The results illustrate that while the QoS performance of the proposed algorithm is comparable to the performance of the optimum opportunistic selection algorithm, fewer number of network handovers (on average) are required. In addition, compared to the existing predefined network selection strategies with no handover, the MDP-based algorithm offers significantly better QoS.
Keywords :
Markov processes; learning (artificial intelligence); mobility management (mobile radio); next generation networks; optimisation; quality of service; radio access networks; MDP-based algorithm; Markov decision process; QoS maximization; QoS performance; access point; base station; handheld device; heterogeneous wireless system; learning-based network selection method; mobile user quality of service; network handover mechanism; next generation wireless communication; optimum opportunistic selection algorithm; reinforcement learning; wireless access technology; Equations; Heuristic algorithms; IEEE 802.11 Standards; Quality of service; Throughput; WiMAX;
Conference_Titel :
Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE
Conference_Location :
Houston, TX, USA
Print_ISBN :
978-1-4244-9266-4
Electronic_ISBN :
1930-529X
DOI :
10.1109/GLOCOM.2011.6134269