Title :
Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equation
Author_Institution :
Universit?? de Paris-IX Dauphine, Paris, Cedex, France
Abstract :
In this paper we study the existence of optimal trajectories associated with a generalized solution to Hamilton-Jacobi-Bellman equation arising in optimal control. In general, we cannot expect such solutions to be differentiable. But, in a way analogous to the use of distributions in PDE, we replace the usual derivatives with "contingent epiderivatives" and the Hamilton-Jacobi equation by two "contingent Hamilton-Jacobi inequalities". We show that the value function of an optimal control problem verifies these "contingent inequalities". Our approach allows the following three results: (a) The upper semicontinuous solutions to contingent inequalities are monotone along the trajectories of the dynamical system. (b) With every continuous solution V of the contingent inequalities, we can associate an optimal trajectory along which V is constant. (c) For such solutions, we can construct optimal trajectories through the corresponding optimal feedback. They are also "viscosity solutions" of a Hamilton-Jacobi equation. Finally we discuss the link of viscosity solutions with Clarke\´s approach to the Hamilton-Jacobi equation.
Keywords :
Control systems; Differential equations; Dynamic programming; Feedback; Instruction sets; Optimal control; Viscosity;
Conference_Titel :
Decision and Control, 1987. 26th IEEE Conference on
Conference_Location :
Los Angeles, California, USA
DOI :
10.1109/CDC.1987.272464