DocumentCode :
3084982
Title :
Clustering analysis applied to NDVI/NOAA multitemporal images to improve the monitoring process of sugarcane crops
Author :
Romani, L.A.S. ; Gonçalves, R. R V ; Amaral, B.F. ; Chino, D.Y.T. ; Zullo, J., Jr. ; Traina, C., Jr. ; Sousa, E.P.M. ; Traina, A.J.M.
Author_Institution :
Embrapa Agric. Inf., Campinas, Brazil
fYear :
2011
fDate :
12-14 July 2011
Firstpage :
33
Lastpage :
36
Abstract :
This paper discusses how to take advantage of clustering techniques to analyze and extract useful information from multi-temporal images of low spatial resolution satellites to monitor the sugarcane expansion. Additionally, we introduce the SatImagExplorer system that was developed to automatically extract time series from a huge volume of remote sensing images as well as provide algorithms of clustering analysis and geospatial visualization. According to experiments accomplished with spectral images of sugarcane fields, this proposed approach can be satisfactorily used in crop monitoring.
Keywords :
geophysical image processing; time series; vegetation mapping; NDVT-NOAA multitemporal images; SatlmagExplorer system; clustering analysis algorithms; clustering techniques; crop monitoring; geospatial visualization; low spatial resolution satellites; monitoring process; remote sensing images; spectral images; sugarcane crops; sugarcane expansion; sugarcane fields; time series; Agriculture; Monitoring; Productivity; Satellites; Time series analysis; US Government agencies; K-means; K-medoids; NOAA/AVHRR; Time series; productivity;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), 2011 6th International Workshop on the
Conference_Location :
Trento
Print_ISBN :
978-1-4577-1202-9
Type :
conf
DOI :
10.1109/Multi-Temp.2011.6005040
Filename :
6005040
Link To Document :
بازگشت