DocumentCode :
3085312
Title :
Quadratic Stability methodology by parameter dependent state feedback for LPV systems
Author :
Martinez, E. ; Galindo, R.
Author_Institution :
Dept. of Electr. & Mech. Eng., Autonomus Univ. of Nuevo Leon, Nuevo Leon, Mexico
fYear :
2012
fDate :
26-28 Sept. 2012
Firstpage :
1
Lastpage :
6
Abstract :
This paper presents an alternative methodology to solve the quadratic stabilization problem via parameter dependent state feedback. Sufficient conditions for Quadratic Stability by parameter dependent state feedback are given, the LPV control law is gotten by a parameter dependent interpolation of LTI controllers (one for each vertex) solving the regulation problem. This technique is proved using an upper bound of the parameter dependent Lyapunov function of the system. The results are illustrated by a simulation example of a two-cart system.
Keywords :
Lyapunov methods; linear matrix inequalities; linear systems; stability; state feedback; LPV control law; LPV system; linear parameter varying system; parameter dependent Lyapunov function; parameter dependent interpolation; parameter dependent state feedback; quadratic stability methodology; quadratic stabilization; sufficient condition; two-cart system; Interpolation; Linear matrix inequalities; Lyapunov methods; Stability analysis; State feedback; Symmetric matrices; Upper bound; Linear Matrix Inequalities (LMI´s); Linear Parameter Varying Systems (LPV Systems); Lyapunov´s stability; Quadratic Stabilization by state feedback;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrical Engineering, Computing Science and Automatic Control (CCE), 2012 9th International Conference on
Conference_Location :
Mexico City
Print_ISBN :
978-1-4673-2170-9
Type :
conf
DOI :
10.1109/ICEEE.2012.6421138
Filename :
6421138
Link To Document :
بازگشت