DocumentCode :
3086225
Title :
Instability and geometric transience of the aloha protocol
Author :
Parekh, Shaila ; Schoute, F. ; Walrand, Jean
Author_Institution :
AT&T Bell Laboratories, Holmdel, NJ, USA
Volume :
26
fYear :
1987
fDate :
9-11 Dec. 1987
Firstpage :
1073
Lastpage :
1077
Abstract :
In this paper, we give a simple probabilistic proof to show that the discrete time Markov chain underlying the slotted uncontrolled Aloha protocol is geometrically transient. Let P be the (?? ?? ??) transition matrix of this Markov chain. Let Pn denote the northwest (n ?? n) corner truncation of P and ??n. its largest eigenvalue. We establish that, as a consequence of geometric transience, ?? = lim ??n as n ?? ??, exists and that 0 < ?? < 1. Note that the largest eigenvalue of P equals 1. We propose 1/(1-??) as a performance measure which we show to be the limit of certain expected exit times.
Keywords :
Anodes; Control systems; Eigenvalues and eigenfunctions; H infinity control; Laboratories; Mathematical model; Protocols; Telecommunication computing; Telecommunication control; Throughput;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1987. 26th IEEE Conference on
Conference_Location :
Los Angeles, California, USA
Type :
conf
DOI :
10.1109/CDC.1987.272566
Filename :
4049443
Link To Document :
بازگشت