DocumentCode :
3095
Title :
Pattern-Coupled Sparse Bayesian Learning for Inverse Synthetic Aperture Radar Imaging
Author :
Huiping Duan ; Lizao Zhang ; Jun Fang ; Lei Huang ; Hongbin Li
Author_Institution :
Sch. of Electron. Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu, China
Volume :
22
Issue :
11
fYear :
2015
fDate :
Nov. 2015
Firstpage :
1995
Lastpage :
1999
Abstract :
We propose a pattern-coupled sparse Bayesian learning method for inverse synthetic aperture radar (ISAR) imaging by exploiting a block-sparse structure inherent in ISAR target images. A two-dimensional pattern-coupled hierarchical Gaussian prior is proposed to model the pattern dependencies among neighboring scatterers on the target scene. An expectation-maximization (EM) algorithm is developed to infer the maximum a posterior (MAP) estimate of the hyperparameters, along with the posterior distribution of the sparse signal. Numerical results are provided to illustrate the effectiveness of the proposed algorithm.
Keywords :
Gaussian processes; expectation-maximisation algorithm; learning (artificial intelligence); radar computing; radar imaging; synthetic aperture radar; 2D pattern-coupled hierarchical Gaussian prior; EM algorithm; ISAR imaging; MAP estimate; block-sparse structure; expectation-maximization algorithm; hyperparameters; inverse synthetic aperture radar imaging; maximum-a-posterior estimate; pattern-coupled sparse Bayesian learning method; Bayes methods; Covariance matrices; Electronic mail; Imaging; Radar imaging; Scattering; Signal processing algorithms; Block-sparse structure; ISAR; expectation-maximization (EM); pattern-coupled sparse bayesian learning;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2015.2452412
Filename :
7147823
Link To Document :
بازگشت