Title :
Joint parameter and state estimation based on particle filtering and stochastic approximation
Author :
Yang, Xiaojun ; Shi, Kunlin ; Xing, Keyi
Author_Institution :
Syst. Eng. Inst., Xi´´an Jiaotong Univ., Xian
fDate :
Nov. 28 2006-Dec. 1 2006
Abstract :
In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown parameters based on combination of particle filtering and SPSA technique. The estimates of parameters are obtained by state samples and maximum-likelihood estimation under particle filtering, and the SPSA is used to approximate the gradient of target function. The proposed algorithm achieves joint estimation of dynamic state and static parameters. Simulation result demonstrates the efficiency of the algorithm.
Keywords :
adaptive estimation; gradient methods; maximum likelihood estimation; nonlinear dynamical systems; parameter estimation; particle filtering (numerical methods); state estimation; stochastic processes; SPSA technique; adaptive estimation algorithm; joint parameter estimation; maximum-likelihood estimation; nonlinear dynamic system; particle filtering; state estimation; stochastic approximation; target gradient function; Adaptive filters; Approximation algorithms; Filtering algorithms; Information filtering; Information filters; Maximum likelihood estimation; Nonlinear dynamical systems; Parameter estimation; State estimation; Stochastic processes;
Conference_Titel :
Computational Intelligence for Modelling, Control and Automation, 2006 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference on
Conference_Location :
Sydney, NSW
Print_ISBN :
0-7695-2731-0
DOI :
10.1109/CIMCA.2006.138