DocumentCode :
3099516
Title :
Fisher discriminant analysis with kernels
Author :
Mika, Sebastian ; Rätsch, Gunnar ; Weston, Jason ; Schölkopf, Bernhard ; Müller, Klaus-Robert
Author_Institution :
GMD FIRST, Berlin, Germany
fYear :
1999
fDate :
36373
Firstpage :
41
Lastpage :
48
Abstract :
A non-linear classification technique based on Fisher´s discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) non-linear decision function in input space. Large scale simulations demonstrate the competitiveness of our approach
Keywords :
Bayes methods; decision theory; feature extraction; learning (artificial intelligence); neural nets; pattern classification; Fisher discriminant analysis; feature space; input space; kernels; linear classification; nonlinear classification technique; nonlinear decision function; Algorithm design and analysis; Closed-form solution; Computational modeling; Feature extraction; Gaussian distribution; Kernel; Large-scale systems; Principal component analysis; Probability; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop.
Conference_Location :
Madison, WI
Print_ISBN :
0-7803-5673-X
Type :
conf
DOI :
10.1109/NNSP.1999.788121
Filename :
788121
Link To Document :
بازگشت