Title :
Remote dynamic proxies for wave-based peer-to-peer haptic interaction
Author :
Li, Zhi ; Constantinescu, Daniela
Author_Institution :
Dept. of Mech. Eng., Univ. of Victoria, Victoria, BC
Abstract :
This paper introduces a distributed haptic control architecture that can render direct interaction between users in addition to cooperative manipulation of virtual objects. The proposed architecture integrates remote dynamic proxies and peer-to-peer wave-based communications. Remote dynamic proxies are avatars of users at peer sites with motion governed by second order dynamics laws. They render physically-based motion of the distant users in the presence of update discontinuities caused by packet transmission limitations. They also enable users to touch their far away peers directly. The remote dynamic proxies are integrated with peer-to-peer wave-based communications by using wave variable controllers to connect the distributed copies of the shared virtual object, and to connect the users to their remote dynamic proxies. The proposed distributed control architecture is compared via experiments to peer-to-peer haptic cooperation with wave variable time delay compensation. The results illustrate that remote dynamic proxies with wave-based communications: (1) improve position coherency between the distributed copies of the shared virtual object; (2) render mass more faithfully in the presence of network delay; and (3) permit users to interact with each other directly in addition to enabling them to cooperatively manipulate the shared virtual object.
Keywords :
control engineering computing; distributed control; haptic interfaces; peer-to-peer computing; telecontrol; virtual reality; distributed control architecture; distributed haptic control architecture; packet transmission limitations; peer-to-peer haptic cooperation; remote dynamic proxies; shared virtual object; virtual object cooperative manipulation; wave variable controllers; wave-based peer-to-peer haptic interaction; Avatars; Communication system control; Delay effects; Distributed control; Haptic interfaces; Manipulator dynamics; Mechanical engineering; Peer to peer computing; Propagation delay; Virtual environment; B.4.2 [Input/Output and Data Communications]: Input/Output Devices—Channels and controllers C.2.1 [Computer-Communication Networks]: Network Architecture and Design—Network communications; H.5.2 [Information Interfaces and Presentation]: User Interfaces—Haptic I/O;
Conference_Titel :
EuroHaptics conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2009. Third Joint
Conference_Location :
Salt Lake City, UT
Print_ISBN :
978-1-4244-3858-7
DOI :
10.1109/WHC.2009.4810799