DocumentCode :
3103392
Title :
Factorizability of complex signals higher (even) order spectra: a necessary and sufficient condition
Author :
Le Roux, Joël ; Huet, Cécile
Author_Institution :
Nice Univ., Valbonne, France
fYear :
1997
fDate :
21-23 Jul 1997
Firstpage :
385
Lastpage :
389
Abstract :
This communication presents a necessary and sufficient condition for the factorizability of higher order spectra of complex signals. This condition is based on the symmetries of higher order spectra and on an extension of a formula proposed by Marron, Sanchez and Sullivan for unwrapping phases of third order spectra (see J. Opt. Soc. Am. A, vol.7, p.14-20, 1990). It is an identity between products of higher order spectra. Our factorisability test requires no phase unwrapping
Keywords :
higher order statistics; least squares approximations; spectral analysis; complex signals; factorizability; higher order spectra; identity; symmetries; third order spectra; unwrapping phases; Cepstral analysis; Cepstrum; Fourier transforms; Frequency domain analysis; High performance computing; Matrix decomposition; Optimized production technology; Random processes; Sufficient conditions; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Higher-Order Statistics, 1997., Proceedings of the IEEE Signal Processing Workshop on
Conference_Location :
Banff, Alta.
Print_ISBN :
0-8186-8005-9
Type :
conf
DOI :
10.1109/HOST.1997.613552
Filename :
613552
Link To Document :
بازگشت