DocumentCode :
3104578
Title :
Exploratory Mining in Cube Space
Author :
Ramakrishnan, Raghu
Author_Institution :
Yahoo! Res., Berkeley, Berkeley, CA
fYear :
2006
fDate :
18-22 Dec. 2006
Firstpage :
6
Lastpage :
6
Abstract :
Data Mining has evolved as a new discipline at the intersection of several existing areas, including Database Systems, Machine Learning, Optimization, and Statistics. An important question is whether the field has matured to the point where it has originated substantial new problems and techniques that distinguish it from its parent disciplines. In this paper, we discuss a class of new problems and techniques that show great promise for exploratory mining, while synthesizing and generalizing ideas from the parent disciplines. While the class of problems we discuss is broad, there is a common underlying objective-to look beyond a single data mining step (e.g., data summarization or model construction) and address the combined process of data selection and transformation, parameter and algorithm selection, and model construction. The fundamental difficulty lies in the large space of alternative choices at each step, and good solutions must provide a natural framework for managing this complexity. We regard this as a grand challenge for Data Mining, and see the ideas in this paper as promising initial steps towards a rigorous exploratory framework that supports the entire process. This is joint work with several people, in particular, Beechung Chen.
Keywords :
data mining; cube space; data mining; data selection; data transformation; database systems; exploratory mining; machine learning; Data mining; Database systems; Machine learning; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining, 2006. ICDM '06. Sixth International Conference on
Conference_Location :
Hong Kong
ISSN :
1550-4786
Print_ISBN :
0-7695-2701-7
Type :
conf
DOI :
10.1109/ICDM.2006.67
Filename :
4053028
Link To Document :
بازگشت