DocumentCode :
310471
Title :
Blind deconvolution, information maximization and recursive filters
Author :
Torkkola, Kari
Author_Institution :
Phoenix Corp. Res. Labs., Motorola Inc., Tempe, AZ, USA
Volume :
4
fYear :
1997
fDate :
21-24 Apr 1997
Firstpage :
3301
Abstract :
Starting from maximizing information flow through a nonlinear neuron Bell and Sejnowski (see Neural Computation, vol.7, no.6, p.1004-34, 1995) derived adaptation equations for blind deconvolution using an FIR filter. We derive a simpler form of the adaptation and apply it to more complex filter structures, such as recursive filters. As an application, we study blind echo cancellation for speech signals. We also present a method that avoids whitening the signals in the procedure
Keywords :
IIR filters; adaptive filters; adaptive signal processing; deconvolution; echo suppression; filtering theory; neural nets; recursive filters; speech processing; IIR recursive filters; blind deconvolution; blind echo cancellation; complex filter structures; information flow; information maximization; nonlinear neuron; speech signals; Convolution; Deconvolution; Echo cancellers; Entropy; Finite impulse response filter; Information filtering; Information filters; Jacobian matrices; Nonlinear filters; Probability density function;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on
Conference_Location :
Munich
ISSN :
1520-6149
Print_ISBN :
0-8186-7919-0
Type :
conf
DOI :
10.1109/ICASSP.1997.595499
Filename :
595499
Link To Document :
بازگشت