Title :
Estimation of induction motor parameters using hybrid algorithms for power system dynamic studies
Author :
Susanto, Julius ; Islam, Shariful
Author_Institution :
Dept. of Electr. & Comput. Eng., Curtin Univ. of Technol., Perth, WA, Australia
fDate :
Sept. 29 2013-Oct. 3 2013
Abstract :
This paper proposes a hybrid Newton-Raphson and genetic algorithm for the estimation of double cage induction motor parameters from commonly available manufacturer data. The hybrid algorithm was tested on a large data set of 6,380 IEC and NEMA motors and then compared with a baseline Newton-Raphson algorithm. The simulation results show that while the proposed hybrid algorithm is more computationally intensive, it does make significant improvements to convergence and error rates.
Keywords :
Newton-Raphson method; genetic algorithms; induction motors; parameter estimation; double cage induction motor; hybrid Newton Raphson genetic algorithm; hybrid algorithms; induction motor parameters; power system dynamic studies; Convergence; Induction motor; hybrid algorithm; parameter estimation;
Conference_Titel :
Power Engineering Conference (AUPEC), 2013 Australasian Universities
Conference_Location :
Hobart, TAS
DOI :
10.1109/AUPEC.2013.6725462