Title :
Molecular communication: Uni-cast communication on a microtubule topology
Author :
Moore, Michael J. ; Enomoto, Akihiro ; Suda, Tatsuya ; Kayasuga, Atsushi ; Oiwa, Kazuhiro
Author_Institution :
Bren Sch. of Inf. & Comput. Sci., Univ. of California - Irvine, Irvine, CA
Abstract :
Molecular communication is one method for communication among nano-scale components (artificial or biological) that perform simple computation, sensing, or actuation. Future applications using nano-scale components may require communication mechanisms to coordinate with other components. For example, uni-cast is one primitive communication mechanism for transmission from one sender to one receiver and allows two nano-scale components to coordinate and perform some function. In this paper, we consider designing a molecular communication system that applies a molecular motor transport mechanism existing in biological cells. In molecular motor transport, a sender (nano-scale component) releases information molecules, and molecular motors transport the information molecules along protein filaments to a receiver (nano-scale component) up to hundreds of micrometers away. We consider a plus-centered aster (receiver with multiple protein filaments leading to the receiver) as one possible arrangement for protein filaments. We perform simulations to evaluate the probability of sending an information molecule to the receiver. The simulation results indicate that the proposed uni-cast molecular communication is limited in range (distance between sender and receiver with a reasonable success probability) and that the proposed molecular motor system transports simulated information molecules (100 nm radius spheres) with a greater success probability and than a passive diffusion-only system.
Keywords :
biocommunications; biotransport; cellular biophysics; molecular biophysics; nanobiotechnology; proteins; biological cells; information molecules; microtubule topology; molecular communication system; molecular motor transport mechanism; passive diffusion-only system; plus-centered aster; protein filaments; uni-cast communication; Biological cells; Biological systems; Biology computing; Bionanotechnology; Micromotors; Molecular communication; Molecular computing; Nanobioscience; Proteins; Topology; Bionanotechnology; microtubule topology; molecular motor; nano-scale components; unicast;
Conference_Titel :
Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-2383-5
Electronic_ISBN :
1062-922X
DOI :
10.1109/ICSMC.2008.4811244