DocumentCode :
3109841
Title :
Robust mixture decomposition via maximization of trimmed log-likelihood with application to image database organization
Author :
Medasani, Swamp ; Krishnapuram, Raghu
Author_Institution :
Dept. of Math. & Comput. Sci., Colorado Sch. of Mines, Golden, CO, USA
fYear :
1998
fDate :
20-21 Aug 1998
Firstpage :
237
Lastpage :
241
Abstract :
We present a robust mixture decomposition technique that also finds the number of components required to model the mixture automatically. The algorithm maximizes the trimmed log-likelihood to achieve robustness, and finds the `optimal´ number of components by maximizing the entropy of the component cardinalities. We present results on synthetic and real data to illustrate the performance of the algorithm under noisy conditions. Preliminary results indicate that the proposed algorithm can be used to organize image databases for efficient retrieval
Keywords :
Gaussian processes; fuzzy set theory; information retrieval; optimisation; visual databases; component cardinalities; efficient retrieval; image database organization; maximization; noisy conditions; optimal number; real data; robust mixture decomposition technique; robustness; trimmed log-likeliho; Application software; Entropy; Image databases; Image retrieval; Information retrieval; Mathematical model; Parameter estimation; Prototypes; Robustness; Spatial databases;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Information Processing Society - NAFIPS, 1998 Conference of the North American
Conference_Location :
Pensacola Beach, FL
Print_ISBN :
0-7803-4453-7
Type :
conf
DOI :
10.1109/NAFIPS.1998.715572
Filename :
715572
Link To Document :
بازگشت