DocumentCode :
3112264
Title :
A novel approach to generate artificial outliers for support vector data description
Author :
Wang, Chi-Kai ; Ting, Yung ; Liu, Yi-Hung ; Hariyanto, Gunawan
Author_Institution :
Dept. of Mech. Eng., Chung Yuan Christian Univ., Chungli, Taiwan
fYear :
2009
fDate :
5-8 July 2009
Firstpage :
2202
Lastpage :
2207
Abstract :
In this paper, we propose a novel approach to generate artificial outliers for support vector data description with boundary value method. In SVDD, the width parameter S and the penalty parameter C influence the learning results. The N-fold M times cross-validation is well-known and popular scheme to calculate the best (C, S) values. To automatically optimize the identification rate, we need more outliers. Due to this reason, we utilize boundary value in any two dimensions randomly to generalize new outliers. At the last, we use three benchmark data sets: iris, wine, and balance-scale data base to validate the approach in this research has better classification result and faster performance.
Keywords :
boundary-value problems; learning (artificial intelligence); optimisation; pattern classification; support vector machines; N-fold M times cross-validation scheme; SVDD; artificial outlier generation; balance-scale database; boundary value method; iris database; machine learning; optimisation; pattern classification; penalty parameter; support vector data description; width parameter; wine database; Industrial electronics; Instruments; Interpolation; Iris; Kernel; Mechanical engineering; Support vector machine classification; Support vector machines; N-fold M times cross-validation; Support Vector Data Description (SVDD); boundary value method;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics, 2009. ISIE 2009. IEEE International Symposium on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-4347-5
Electronic_ISBN :
978-1-4244-4349-9
Type :
conf
DOI :
10.1109/ISIE.2009.5214421
Filename :
5214421
Link To Document :
بازگشت