DocumentCode :
3112265
Title :
Nonlinear regression model to symbolic interval-valued variables
Author :
de Andrade Lima Neto, E. ; de Carvalho, Fausto
Author_Institution :
Dept. de Estatistica, Univ. Fed. da Paraiba, Joao Pessoa
fYear :
2008
fDate :
12-15 Oct. 2008
Firstpage :
1247
Lastpage :
1252
Abstract :
This paper introduces a nonlinear regression method to fit a regression model to symbolic interval-valued data set. The nonlinear method will be inspired in the method proposed by and will consider two independent nonlinear regression models fitted over the midpoint and range of the intervals. The assessment of the proposed prediction methods is based on the average behavior of the root mean square error and of the square of the correlation coefficient in the framework of a Monte Carlo experiment. The synthetic data sets taking into account the different degree of nonlinearity between the dependent and the independent interval variables, among others aspects.
Keywords :
Monte Carlo methods; data analysis; mean square error methods; regression analysis; Monte Carlo experiment; nonlinear regression method; nonlinear regression model; root mean square error; symbolic interval-valued variables; Artificial intelligence; Context modeling; Data analysis; Linear regression; Monte Carlo methods; Pattern analysis; Pattern recognition; Prediction methods; Predictive models; Root mean square; interval-valued variable; nonlinear regression; symbolic data analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on
Conference_Location :
Singapore
ISSN :
1062-922X
Print_ISBN :
978-1-4244-2383-5
Electronic_ISBN :
1062-922X
Type :
conf
DOI :
10.1109/ICSMC.2008.4811454
Filename :
4811454
Link To Document :
بازگشت