DocumentCode
3112618
Title
Designing a robust type-2 fuzzy logic classifier for non-stationary systems with application in brain-computer interfacing
Author
Herman, Pawel ; Prasad, Girijesh ; McGinnity, Thomas Martin
Author_Institution
Fac. of Eng., Univ. of Ulster, Derry
fYear
2008
fDate
12-15 Oct. 2008
Firstpage
1343
Lastpage
1349
Abstract
Type-2 (T2) fuzzy logic (FL) systems (T2FLSs) have shown a remarkable potential in dealing with uncertain data resulting from real-world systems with non-stationary characteristics. This paper reports on novel developments in interval T2FLS (IT2FLS) classifier design methodology so that system non-stationarities can be effectively handled. In general, the approach presented here rests on a general concept of two-stage FLS design in which an initial rule base structure is first initialized and then system parameters are globally optimized. The proposed incremental enhancements of existing fuzzy techniques, adopted from the area of conventional type-1 (T1) FL, are heuristic in nature. The IT2FLS design methods have been empirically verified in this work in the realm of pattern recognition. In particular, the potential and the suitability of IT2FLS to the problem of classification of motor imagery (MI) related patterns in electroencephalogram (EEG) recordings has been investigated. The outcome of this study bears direct relevance to the development of EEG-based brain-computer interfaces (BCIs) since the problem under examination poses a major difficulty for the state-of-the-art BCI methods. The IT2FLS classifier is evaluated in this work on multi-session EEG data sets in the framework of an off-line BCI. Its performance is quantified in terms of the classification accuracy (CA) rates and has been found to be favorable to that of analogous systems employing a conventional T1FLS, along with linear discriminant analysis (LDA) and support vector machine (SVM), commonly utilized in MI-based BCI systems.
Keywords
brain-computer interfaces; electroencephalography; fuzzy set theory; image classification; medical computing; medical image processing; EEG-based brain-computer interfaces; classification accuracy; linear discriminant analysis; motor imagery classification; nonstationary systems; robust type-2 fuzzy logic classifier; support vector machine; Brain computer interfaces; Design methodology; Design optimization; Electroencephalography; Fuzzy logic; Linear discriminant analysis; Pattern recognition; Robustness; Support vector machine classification; Support vector machines; brain-computer interface; electroencephalogram; pattern recognition; type-2 fuzzy logic system;
fLanguage
English
Publisher
ieee
Conference_Titel
Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on
Conference_Location
Singapore
ISSN
1062-922X
Print_ISBN
978-1-4244-2383-5
Electronic_ISBN
1062-922X
Type
conf
DOI
10.1109/ICSMC.2008.4811472
Filename
4811472
Link To Document