• DocumentCode
    311272
  • Title

    Wavelet packets and genetic algorithms

  • Author

    Astola, Jaakko ; Egiazarian, Karen ; Huttunen, Heikki

  • Author_Institution
    Signal Process. Lab., Tampere Univ. of Technol., Finland
  • Volume
    3
  • fYear
    1997
  • fDate
    21-24 Apr 1997
  • Firstpage
    2117
  • Abstract
    This paper is devoted to the theoretical analysis of the fitness function in genetic algorithms using wavelet packet (WP) transforms. More specifically, WP transforms are used to calculate the average fitness value of a schema. Based on this one can decide whether a certain function is easy or hard for a genetic algorithm. The result is an extension of Bethke´s (1980) work who discovered an efficient method for calculating schema average fitness values using the Walsh transform
  • Keywords
    Walsh functions; filtering theory; genetic algorithms; matrix algebra; transforms; wavelet transforms; Haar transform; Walsh transform; fitness function; genetic algorithms; schema average fitness value; wavelet packet transforms; Algorithm design and analysis; Filter bank; Genetic algorithms; Laboratories; Multiresolution analysis; Signal analysis; Signal processing algorithms; Wavelet analysis; Wavelet packets; Wavelet transforms;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on
  • Conference_Location
    Munich
  • ISSN
    1520-6149
  • Print_ISBN
    0-8186-7919-0
  • Type

    conf

  • DOI
    10.1109/ICASSP.1997.599456
  • Filename
    599456