DocumentCode :
3116189
Title :
Signal Theory for SVM Kernel Parameter Estimation
Author :
Nelson, J.D.B. ; Damper, R.L. ; Gunn, S.R. ; Guo, B.
Author_Institution :
Syst. Res. Group Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton
fYear :
2006
fDate :
6-8 Sept. 2006
Firstpage :
149
Lastpage :
154
Abstract :
Fourier-based regularisation is considered for the support vector machine classification problem over absolutely integrable loss functions. By invoking the modest assumption that the decision function belongs to a Paley-Wiener space, it is shown that the classification problem can be developed in the context of signal theory. Furthermore, by employing the Paley-Wiener reproducing kernel, namely the sine function, it is shown that a principled and finite kernel hyper-parameter search space can be discerned, a priori. Subsequent experiments, performed on a commonly available hyper-spectral image data set, reveal that the approach yields results that surpass state-of-the-art benchmarks.
Keywords :
Fourier transforms; parameter estimation; signal classification; support vector machines; Fourier-based regularisation; Paley-Wiener reproducing kernel; Paley-Wiener space; SVM kernel parameter estimation; absolutely integrable loss function; classification problem; decision function; finite kernel hyperparameter search space; signal theory; sine function; support vector machine; Computer science; Gunn devices; Hilbert space; Kernel; Machine learning; Parameter estimation; Sampling methods; Space technology; Support vector machine classification; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing, 2006. Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on
Conference_Location :
Arlington, VA
ISSN :
1551-2541
Print_ISBN :
1-4244-0656-0
Electronic_ISBN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2006.275539
Filename :
4053638
Link To Document :
بازگشت