DocumentCode :
3116229
Title :
Linear microcircuit fault modeling and detection
Author :
Epstein, B.R. ; Miller, S.R. ; Czigler, M.H. ; Gray, D.R.
Author_Institution :
David Sarnoff Res. Center, Princeton, NJ, USA
fYear :
1991
fDate :
15-17 April 1991
Firstpage :
59
Lastpage :
61
Abstract :
Classical discrimination analysis and neural network techniques are used to detect and classify possible faults in linear microcircuits. The success rates of simulated fault detection and classification are described for various types of analog and mixed-mode circuits.<>
Keywords :
analogue circuits; application specific integrated circuits; fault location; integrated circuit testing; linear integrated circuits; neural nets; analogue circuits; discrimination analysis; linear microcircuits; mixed-mode circuits; neural network techniques; simulated fault detection; Circuit faults; Circuit simulation; Circuit testing; Electrical fault detection; Fault detection; Fault diagnosis; Neural networks; Performance analysis; Statistical analysis; Voltage;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
VLSI Test Symposium, 1991. 'Chip-to-System Test Concerns for the 90's', Digest of Papers
Conference_Location :
Atlantic City, NJ, USA
Type :
conf
DOI :
10.1109/VTEST.1991.208133
Filename :
208133
Link To Document :
بازگشت